Model-based human action recognition
نویسندگان
چکیده
The identification of human basic actions plays an important role for recognizing human activities in complex scene. In this paper we propose an approach for automatic human action recognition. The parametric model of human is extracted from image sequences using motion/texture based human detection and tracking. Action features from its model are carefully defined into the action interaction representation and used for the recognizing process. Performance of proposed method is tested experimentally using datasets under indoor environments.
منابع مشابه
Legal Recognition of Intersex Persons; From Negative Recognition to Positive Recognition
Incontrovertibly each person’s body has an undeniable role in shaping personality and in self- definition of ego. Nowadays and based on scientific efforts, we know sex and accordingly, gender, as a spectrum in inter bodily experience. Over the long years intersex status was considered a "disorder", but recently and in the light of modern medical, psychiatric and cognitive science, "different" e...
متن کاملAction Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کامل3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملLearning a discriminative hidden part model for human action recognition
We present a discriminative part-based approach for human action recognition from video sequences using motion features. Our model is based on the recently proposed hidden conditional random field (hCRF) for object recognition. Similar to hCRF for object recognition, we model a human action by a flexible constellation of parts conditioned on image observations. Different from object recognition...
متن کامل